Code: 13A54101

B.Tech I Year (R13) Supplementary Examinations December/January 2014/2015 MATHEMATICS – I

(Common to all branches)

Max. Marks: 70

Time: 3 hours

PART – A (Compulsory Question)

fiswer the Afollowing: (10 X 02 = 20 Marks)

- (a) Solve $(D^3 + 1)y = 0$.
- (b) Solve $\frac{dy}{dx} = (x + y + 2)^2 = 0.$
- (c) Expand e^{x+y} in a neighborhood of (1, 1).
- (d) Find the envelop of the family of curves $y = mx + m^4$ for different values of 'm'.
- (e) Find the asymptotes of $y^3 x^2y + 2y^2 + 4y + x$.
- (f) Find the quadrature of the rectangular hyperbola $y = k^2/x$ from x = a to x = b.
- (g) $\mathcal{L}\{e^{at}\cosh bt\} =$

(h)
$$\mathcal{L}^{-1}\left\{\frac{\mathrm{e}^{-3\mathrm{s}}}{\mathrm{s}^2}\right\} =$$

- (i) Prove that $\overline{a}.\left(\nabla\frac{1}{r}\right) = -\frac{\overline{a}\cdot\overline{r}}{r^3}$, \overline{a} is a constant vector.
-) (j State Green's theorem.

PART – B (Answer all five units, 5 X 10 = 50 Marks) UNIT - I

2 The deflection of a strut of length ℓ with one end built - in and the other end subjected to the end thrust P, satisfies $\frac{d^2y}{dx^2} + a^2y = \frac{a^2R}{P}(\ell - x)$. Find the deflection y of the strut at a distance x from the built - in end.

OR

3 Solve $(D^2 - 4D)y = e^x + \sin 3x \cos 2x$.

UNIT - II

- 4 Verify Maclaurin's theorem for $f(x) = (1 x)^{5/2}$ with Lagrange form of remainder up to 3 terms with x = 1. OR
- Find the radius of curvature at any point P(at², 2at) on the parabola $y^2 = 4ax$. Show that it is $2\frac{(SP)^{3/2}}{\sqrt{a}}$. Where S is the focus of the parabola?

UNIT - III)

OR

- 6 Find the volume of the solid generated by revolution of the loop of the curve $y^2(a x) = x^2(a + x)$ about the x axis.
- 7 Evaluate the integral $\int_{y=0}^{1} \int_{x=y}^{a} \frac{x dx dy}{x^2+y^2}$.

UNIT - IV

- 8 Find the Laplace transform for $f(t) = \left(\sqrt{t} \frac{1}{\sqrt{t}}\right)^3$.
- 9 The triangular wave function defined by $f(t) = \begin{cases} t, & 0 < t < a \\ 2a t, & a < t < 2a \end{cases}$ and f(t + 2a) = f(t). Find Laplace transform of f(t).

UNIT - V

10 Find the directional derivative of $\phi(x, y, z) = xy + yz + zx$ in the direction of $-2\overline{i} + \overline{j} + 2\overline{k}$ at the point (1,2,0).

11 If $\overline{F} = 2xz\overline{i} - x\overline{j} + y^2\overline{k}$ evaluate $\iiint_V \overline{F} dv$ where V is the region bounded by the surface $x = 0, y = 0, x = 2, y = 6, z = x^4, z = 4$.